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We have made a theoretical study of the transitions induced by a magnetic field for the two-sublattice
canted antiferromagnet at 0 K. The Hamiltonian for the system includes isotropic and anisotropic ex-
change, uniaxial single-ion anisotropy, and Dzyaloshinsky-Moriya D+ S; X S; antisymmetric exchange. The
problem is solved in the molecular-field approximation with D perpendicular to the antiferromagnetic
easy axis. The equations of equilibrium and stability are solved numerically by computer. The antiferro-
magnetic to spin-flop transition occurs when the net moment reaches a critical angle asn (%p) . The paramag-
netic transition is destroyed by the Dyzaloshinsky-Moriya (DM) interaction unless the field is applied
parallel to D. For H not parallel to D, we observe a quasiparamagnetic transition which manifests itself

as an inflection point in the susceptibility.

I. INTRODUCTION

Studies of the phase transitions of the uniaxial anti-
ferromagnet have been made in the molecular-field
approximation,!? in the spin-wave approximation,® and
in the Green’s-function random phase approximation
(RPA), and Callen decoupling approximations.* More
recently, the canted antiferromagnet with a Dzyaloshin-
sky-Moriya (DM) antisymmetric exchange interaction®
has been considered in the small-D approximation.t—%
However, three important questions remain unresolved:
(1) Does the antiferromagnetic axis undergo a true
spin-flop discontinuity? (2) What are the effects of a
large DM interaction? (3) What happens to the para-
magnetic boundaries?

II. HAMILTONIAN

The magnetic field dependence of the phase bound-
aries has been studied using a Heisenberg Hamiltonian,
retaining all types of second-order interaction?:

H=Hex+HaK+HaL+HD+sz (1)
where
Hex=%> J:iiS:+S; (isotropic exchange), (2a)
i
Hix=%3 Ki;jS:#Sy* (anisotropic exchange), (2b)
7
Hu=—3' T (S —1S(5+1)]
(uniaxial anisotropy), (2c)
Hp=13 3 Di;(S#S;"— S:i*S;*)
i
(DM antisymmetric exchange, D=Dj), (2d)
(Zeeman interaction).  (2e)

sz _g#BH° Z Si

The total Hamiltonian is
H=%3 iS¢ Si+3 3 KisSi# Sy
%5 LY}

—3L 3 [(S)*—3S(S+1)]
+3 2 Dii(SS7— S#87) —gusH- 3 Si. (3)

Following the formalism of Rohrer and Thomas,? we
rewrite the Hamiltonian as a free energy in molecular
fields:

¢=FE/N= S2[J; cos(a;—as)
—3(L—K,) (cos’aq+ cos’as) + K1 cosay cosas
+D cosf sin(a;—ae) + Jo—3 L]
—gus S[H?(sinay+ sinae) cosf+ H¥(sinay+ sines) sinf
+ H*(cosay+ cosae)].  (4)

The angles are defined according to Fig. 1. IV is the
number of spins per sublattice, oy denotes the 4 sub-
lattice, a€ 4. oy denotes the B sublattice, € B,

Jl.= Z ]ab= E Jaby (Sa)
acA beB

Jo= 32 Jaw= > Jow, (5b)
aecd beB

Ki= ) K= 2 Ku, (5¢)
aed beB

K2= Z K,ml= Z Kbb', (Sd)
aeAd beB

D= 3 Du= Y Duy, Duy=—Dy,  (Se)
aed beB

L=L'(1—-1/25). (5f)

We can define the molecular fields

Hp=J1S/gus, (6a)

Hp=(L—K) S/gus, (6b)

HK= KlS/gm;, (6C)

Hp=DS/gus. (6d)

We then transform the angles to a more convenient
set and rewrite the energy as a dimensionless quantity.

e=E/NS*J1=— cos2¢—h(cos2¢ cos?a+ sinp)
— hg (cos’a— sin%p) — hp cosf sin2¢p
— 2h® sing cosa cosf— 2AhY sing cosa sinf

+2h% sina sing, (7)
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where
hL=IIL/HE, etc., (8)
and
o= Ol+¢, (93')
aw=1+a—a¢. (9b)

Our problem is now reduced to solving the equilibrium
and stability equations. The equilibrium equations are

ae/E)m:O. (10)
The stability equations are
S (ni, ;) = (6%/9n?) (8%/9n;?) — [0%/dm:0n; P20, (1)

where = (¢, 6, a).
III. ZERO-TEMPERATURE PHASES

We wish to solve for the phase boundaries of a
uniaxial antiferromagnet, with the z axis being the easy
axis, whose xy-plane symmetry has been broken by a
DM interaction with D vector in the y direction. The
zero-field equilibrium configuration has both spin sub-
lattices lying in the xz plane, ‘“‘antiferromagnetically”
aligned but each canted toward the x axis an angle ¢,
producing a net moment in the x direction.

(a) h= (0, 0, &) shall be referred to as the parallel or
easy axis case. From symmetry we can see that §=0.
The first-order transition is characterized by discon-
tinuities in the energy or magnetization and a magnetic
hysteresis. There is no unique spin-flop critical field but
a region in which both the antiferromagnetic and spin-
flop states are stable. The upper boundary of this re-
glon is /s, and the lower boundary is As. If one in-
creases the applied field from zero, the AF state re-
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Fic. 1. Spin array with angles defined in Eq. (4).
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I'16. 2. Critical angle agy(kp) for ig=0 and &5, =0.1 versus Zp.

mains stable up to %, analogous to the superheated
liquid-gas transition. If one then reverses the process,
reducing the field, the SF state remains stable down to
ke, analogous to the supercooled gas-liquid transition.
The energies of the AF and SF states are equal at the
thermodynamic critical field Ay, implying that if s <
h<hgn, the AF state is metastable, and if by <k <ln,
the SF state is metastable.
The equilibrium conditions are

d¢/0p= (2+hx-+hr, cos2a) sin2¢
—2hp cos2¢+ 2k sina cosp=0,
d¢/da= (hg+hr cos2¢) sin2a—+ 2k sing cosa=0.

(12)
(13)
The stability function is
S(a, ¢) =1{(2+hg+hz cos2a) cos2¢
+2hp sin2¢p—k sina sing} { (hx-+hy cos2¢) cos2a
— h sina sing} — {1, sin2a sin2¢— & cosa cos¢}2>0.
(14)

The canting of the system in zero field is given by
h=0, and a=0 as

tan2¢o=2hp/ (24 hx-+hz). (15)
When cosa#0, ¢ and « are related by Eq. 13:
sina= —h sing/ (hg~+hr, cos2e). (16)
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Fic. 3. Critical fields %n(hp), %sn(kp), and he(hp) versus kp

for g =0 and /1 =0.1.

The transition from the antiferromagnetic state to the
spin-flop state, called the superheated transition, is
defined by the requirement that S(e, ¢)=0. The solu-
tion with 2p=0 is well known and is given by

hsn(0) =[(2+hx+he) (he+he) 172

The hp=0 case is characterized by a=0 and ¢=0 for
h<hsn(0) and a=—3%7 for A>hsu(0). When hp>=0
there exists a net moment which is in the x direction in
zero field but moves towards the z axis as the field is
increased. Therefore, when 0<A<hgn(kp), @ and ¢ are
not zero. As % approaches k1 (%p), | @ | becomes larger
and approaches a critical angle o, (#p). When % ex-
ceeds ksn(hp), then a=—2ir and a discontinuity in
magnetization has taken place. The Ap=#0 equations
were solved numerically by computer using Newton’s
method for three unknowns (Figs. 2 and 3).

The spin-flop state is defined by letting a= —4ix.
The boundaries for this phase occur when S(—2r, ¢) =
0. When 4p=0, there are two phase boundaries, a spin
flop to antiferromagnetic, or supercooled, boundary
and a spin flop to paramagnetic boundary. The %p
solutions are

hso(0) = (24hx—he) [(hx~+h1) / (2+hi+he) T2,
(18a)
(18b)

(17)

B! (0) = 2+ hge— Iz
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The spin-flop state is stable, S(—3ir,¢)>0, when
5o (0) <h<h,'1(0).

The equations with zp70 were solved numerically
(Fig. 3). The paramagnetic transition, which corre-
sponds to ¢=3m or a spin saturation, does not exist
because the DM interaction will lower the energy if the
spins cant slightly. To see this, examine the energy
when % is large and ¢= 37—, 6~hp/h<1:

e’zl—l-hK—hL——Zh——hDa. (19)
No matter how large % is, §%0 will give a lower energy.

Experimentally, one almost always observes the
thermodynamic transition defined by ear=esr. One
usually argues that “nucleation centers’ prevent passing
of the equal energy point.’ The procedure for finding
B 1s to define

A=esp—esr,
and solve for A=0. When 4p=0, the solution is
hin(0) = [(2+hg—hr) (hg+h) V2

The hp#0 equations were solved numerically (Fig. 3).
As one would expect, the critical angle ayy is less than
asn. The critical fields obey &g </yn<hsh, but

hth= (hschsh) 172

(20)

only when 4p=0.

Taking proper care to include all second-order terms,
one can obtain an approximation for k. (kp) where
hD<<1:

hso(hp) =3 {—hp+[hp*+4hs2(0) 12}, (21)

Figure 4 compares Eq. (21) with the numerical results
for ik =0 and 4,=0.1.

(b) We now consider the case where h= (%, 0, 0) is
perpendicular to the easy axis and the D vector. We
use Egs. (10) and (11) with «=0 and 6=0. When
hp=0 the paramagnetic transition occurs at

h,,*(O):Z—f-hK-i-hL. (22)
T —r—— T
50 -
— hge  NUMERICAL CALCULATION
40 —-=hg, APPROXIMATION 4
0 .30 -
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F16. 4. Comparison of numerical value of % (%p) and Eq. (21)
for ig=0 and %,=0.1.
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As in the previous case, p70 destroys the second-
order paramagnetic transition.

(c) When h= (0, &, 0) we are able to obtain an exact
solution. For kp=0 the problem is equivalent to
(b) For hp?fo,

9¢/d¢p= (2-+hx+h) sin2¢
—2hp cos2¢ cosf—2h cose sinf=0, (23)
d¢/00=— 2h sing cosb+2hp sinf sing cosp=0, (24)
S(6, ¢) =[(2+hx+h1) cos2p+2hp sin2¢ cosh
—+/ sing sinf7] (% sing sinf-+/%p cosh sing cose)
— (hp sind cos2¢—h cosg cosf)?>0.

From Eq. 24,

(25)

cosf= (hp/h) cose sinf.
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¥16. 5. x!! versus H for MnClp+4H,0. T=0.26 K, Hy,=17.5 kG,
and H,!l =20.0 kG (Ref. 11).

The solution to Eq. 23 and S(0, ¢)=0is=¢=3r at a
critical field:
hpt=3{hp*(0)+ [ (7,+(0) y+4hp*]?}.

IV. SUSCEPTIBILITY

(26)

One method of experimentally determining the criti-
cal fields is to measure the susceptibility x as a function
of H. Rives’s!! data for x versus H for MnCl,-4H,0
(hg=~20, hp~0, h;~0.2) show anomalies at the spin-
flop and paramagnetic boundaries (Fig. 5). For our
system we can define a magnetization

M== sin¢ cosa cos,
MY= sin¢ cosa sinf, (27)
M?= — sing sina.
The susceptibility is
x'=dM?/dh'.

We have calculated x* and x* numerically as functions
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F16. 6. Numerical calculations of x versus /% for ig=0, ,=0.1,
and 4p=0.05.

of & (Fig. 6). The zero-field susceptibility is given by

Xo®= (cos’po) / (f1,+(0) cos2eo+2hp sin2ey), (28a)
x0?=2/(hp*(hp) +hp+(0)), (28b)
xo*= sin%¢o/ (hg-+hr cos2¢y). (28¢c)

The inflection point in the susceptibility corresponding
to a quasiparamagnetic transition was examined by
numerically calculating dx/dk (Fig. 7) as a function of
h. The x and z susceptibilities can be expressed as

x=[hy(0)+hp sing(4— cos2e/ cos’s) 17, (29)
where we are assuming 4> kg (hp) :
hp(0) =hp+(0)=2+hg+hr,  forx”
=h,1(0)=2+hg—hy for x2.
The quasiparamagnetic boﬁndary is given by
@2xi/dh?=0.
For hp<1 the approximate solution is
cos’q,~=(4/5) [hn/h»(0) ], (30)
Ry~ (0)+3 (7 (0) hp?/100) 3. (31)

U ST TR N VU S SH WU B
é 4 6 8 1012 I4 16 18 20 22 24 26 28 30 32
h

F1c. 7. Numerical calculation of dx/dk versus h for hg=0,
hy,=0.1, and %p=0.05.
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For the case illustrated in Fig. 7, the numerically com-
puted inflection points occur at

Bgp'=1.990, o= T4.44°,
Brgpy™=2.195,  ¢pt=T4.97°,

where hx=0, h;=0.1, kp=0.05. Equations (30) and
(31) give

Bgp?=2.009,  gpr="T4.0°

hept=2.212,  ¢gpt=T4.5°.
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V. CONCLUSION

The addition of a DM interaction to the uniaxial
antiferromagnet with anisotropic exchange yields a
Heisenberg isotropic exchange Hamiltonian with gen-
eral second-order anisotropy. The hysteresis of the first-
order spin-flop transition is reduced as D is increased
and the paramagnetic transition only occurs when the
field is applied parallel to D. Experimentally, a quasi-
paramagnetic transition would be observed as an in-
flection point in the susceptibility for fields not parallel
to D.

* Work supported by a National Science Foundation grant.
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Effects of Hydrostatic Pressure and of Jahn-Teller Distortions
on the Magnetic Properties of RbFeF,f

J. B. GoopenoucH, N. MENYUK, K. DwiGHT, AND J. A. KAFALAS
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
(Received 19 June 1970)

The first-order transitions at 77=40°K and 7>=87°K in RbFeF; have been measured as a function of
hydrostatic pressure and applied magnetic field. It was not possible to observe the Tx=102°K transition
with a magnetic-susceptibility measurement. It was found that (AT1/AH,),=0.35°/kOe, (AT:/AH,) p=
0.19°/kOe, (ATi/AP)g=0.18°/kbar and (ATy/AP)g=—0.81°/kbar. These results correspond to latent
heats of 0.006 and 0.04 cal/g at T; and T, respectively, and relative volume changes AV,/V;=1.5X1075,
AVy/Ve=—22X1075. It is pointed out that a Jahn-Teller distortion to tetragonal (¢/a>1) symmetry
in the interval To< T < Ty introduces a strong magnetoelastic coupling. This causes the heavy twinning
that has been observed below Ty, and the resulting twinned structure is retained in the entire tem-
perature interval 0< 7'< T. In the temperature interval 7, <7 <T,, Rb*-F~ interactions induce distor-
tions to orthorhombic or tetragonal symmetries that are superimposed on the Jahn-Teller distortion.
The orthorhombic distortion is cooperative across twin boundaries caused by the Jahn-Teller distortion
and also permits spin canting, which introduces a ferromagnetic component below T%. It is shown how
the interplay of these distortions plus strong magnetoelastic coupling can explain the appearance of two
sets of Mossbauer peaks below 73 and results in macroscopic ferromagnetic components having cubic
symmetry even though the microscopic crystallographic symmetry is ‘“orthorhombic” (T3<7T<T3).
The Jahn-Teller distortion changes to rhombohedral (e <60°) for 7'< T}; in combination with the existing
orthorhombic structure, this produces monoclinic symmetry on a microscopic scale. Nevertheless, it is
shown that the macroscopic magnetization retains its cubic symmetry, that the easy magnetization direc-
tion changes from (100) to the (110), that the apparent moment increases, and that there may still be
two sets of Mossbauer peaks.

I. INTRODUCTION

Above its Néel temperature 7x=102°K,! RbFeF;
has the cubic perovskite structure, but it becomes tet-
ragonal (¢/a>1) in the interval T, <7< Ty.2 It under-
goes first-order transitions at 77=40°K and T,=
87°K; it exhibits weak ferromagnetism at all 7<87°K.?
In the interval T1<T< T, the structure appears to be

orthorhombic, and below 7 it has lower symmetry,
probably monoclinic.? The ferromagnetic moment has a
preferred direction along the pseudocubic (100) axes
in the interval Ty <7< T, along the pseudocubic (110)
axes below 7% It is remarkable that these noncubic
crystals exhibit a cubic macroscopic anisotropy of the
weak ferromagnetism. A neutron-diffraction study on a
polycrystalline sample shows the dominant magnetic



